Forces Review

1) Find the net force or $\sum F$

$$
\begin{aligned}
& a=5 \mathrm{~m} / \mathrm{s}^{2} \\
& 3 \mathrm{~kg}
\end{aligned}
$$

2) Find the net force or $\sum F$

$$
\begin{gathered}
a=4 \mathrm{~m} / \mathrm{s}^{2} \\
10 \mathrm{~kg}
\end{gathered}
$$

3) Find the missing piece

$$
\begin{gathered}
F_{\text {net }}=14 \mathrm{~N} \\
\mathrm{a}=? \mathrm{~m} / \mathrm{s}^{2} \\
7 \mathrm{~kg}
\end{gathered}
$$

4) Find the missing piece

$$
\begin{gathered}
\sum F=45 \mathrm{~N} \\
\mathrm{a}=9 \mathrm{~m} / \mathrm{s}^{2} \\
? \mathrm{~kg}
\end{gathered}
$$

5) Find the net force and then calculate the acceleration of each box

6) Find the force of gravity of the box, then find the net force, and then calculate the acceleration of each box

7) Find the force of gravity of the box, Find the net force, Find the Tension in the rope

$$
\left\lceil a=4 \mathrm{~m} / \mathrm{s}^{2}\right.
$$

10 kg box
8) Find Force of gravity, Find Normal Force, Find Net Force, Find the acceleration of the box

9) Find Force of gravity, Find Normal Force, Find Net Force, Find the Frictional Force

Momentum Problems (Use your momentum charts to answer the following questions)

1. A $1500 \cdot \mathrm{~kg}$ car traveling east at $20 \mathrm{~m} / \mathrm{s}$ collides with a moving $2500 \cdot \mathrm{~kg}$ truck. After they collide, the two interlock and move together with a velocity of $30 \mathrm{~m} / \mathrm{s}$ west. What was the original velocity of the truck?
2. A $4-\mathrm{kg}$ gun shoots a $0.1-\mathrm{kg}$ bullet at $400 \mathrm{~m} / \mathrm{s}$. Find the recoil speed of the gun.
3. Two carts roll toward each other on a frictionless track. Cart A has mass 800 kg and speed $5 \mathrm{~m} / \mathrm{s}$. Cart B has mass 200 kg and speed $5 \mathrm{~m} / \mathrm{s}$.
a. If the 2 carts undergo an inelastic collision, what is the magnitude and direction of their final velocity?
4. A 0.2 kg cue ball traveling to the right at $3 \mathrm{~m} / \mathrm{s}$ collides head on with the $\mathbf{8}$ ball, which is initially at rest. After they collide, the $\mathbf{8}$ ball moves to the right at $3 \mathrm{~m} / \mathrm{s}$. How fast, and in what direction will the cue ball be moving after the collision?
5. A 1000 kg car moving east at $5 \mathrm{~m} / \mathrm{s}$ collides with a 2000 kg car moving east at $2 \mathrm{~m} / \mathrm{s}$. After the collision, the 2000 kg car moves east at $5 \mathrm{~m} / \mathrm{s}$.
a. Find the final velocity of the 1000 kg car.
6. Two sumo wrestlers run towards each other, the first has a mass of 150 kg and is running at $14 \mathrm{~m} / \mathrm{s}$. The second wrestler has a mass of 200 kg and is running with a speed of $18 \mathrm{~m} / \mathrm{s}$. They collide in a perfectly elastic collision. If the second wrestler bounces backwards at $4 \mathrm{~m} / \mathrm{s}$. Find the final velocity of the first wrestler.
