Properties of First Derivatives:

Derivative is a **rate of change**; it finds the change in y over the change in x, $\frac{dy}{dx}$, which is slope. **Ist derivative** \Rightarrow max. and min., increasing and decreasing, slope of the tangent line to the curve, and velocity. **2nd derivative** \Rightarrow inflection points, concavity, and acceleration.

Properties of First Derivative:

Increasing: s	lopes of tangent lines are $f'(x) > \$
Decreasing:	slopes of tangent lines are $f'(x) < \$
Maximum Poi	<u>nt:</u> Set $f'(x) = $ and it is where the slopes turn from to
<u>Minimum Poir</u>	<u>nt:</u> Set $f'(x) = $ and it is where the slopes turn from to

Properties of Second Derivative:

Concave Up: slo	opes of tangent lines are	f'''(x) >
Concave Down:	slopes of tangent lines are _	f''(x) <
Inflection Points:	Set $f''(x) = $ and it is	where the points on the graph switch

<u>EX#1:</u> (a) Find the maximum point, the minimum point, the intervals of increasing, and the intervals of decreasing for the following function:

 $y = 2x^3 - 3x^2 - 36x + 2$

(b) Find the inflection point, and the intervals of concavity for the function in EX#1.

Optimization Problems:

- 1) Draw and label a picture.
- 2) Write equations that fit the scenario.
- 3) Combine equations into one equation.
- 4) Take the derivative and set it equal to 0.
- 5) Solve for the variable.

EX#1: An open box of maximum volume is to be made from a square piece of material, 18 inches on a side, by cutting equal squares from the corners and turning up the sides. How much should you cut off from the corners? What is the maximum volume of your box?

 $V = (18 - 2x)^2 \cdot x$ $V = 4x^3 - 72x^2 + 324x$

EX#2: A farmer plans to fence a rectangular pasture adjacent to a river. The farmer has 84 feet of fence in which to enclose the pasture. What dimensions should be used so that the enclosed area will be a maximum? What is the maximum Area?

```
P = 2y + x \qquad A = x \cdot y
```


<u>EX#3</u>: A rectangle is bounded by the *x*-axis and the semicircle $y = \sqrt{18 - x^2}$. What length and width should the rectangle have so that its area is a maximum?

$$y = \sqrt{18 - x^2} \qquad A = 2 \cdot x \cdot y$$

Mean Value Theorem of Derivatives:

The slope of the tangent at value c ______ the slope of the secant through a and b.

EX#1: For what value c, such that $0 \le c \le 3$, is the instantaneous rate of change for $f(x) = x^2 - 2x$ equal to the average rate of change over the interval [0, 3]?

Sample AP Problems:

2013 AP Practice Exam Multiple Choice

- 5. If g is the function given by $g(x) = \frac{1}{3}x^3 + \frac{3}{2}x^2 70x + 5$, on which of the following intervals is g decreasing?
 - is g decreasing.
 - (A) $(-\infty, -10)$ and $(7, \infty)$
 - (B) $(-\infty, -7)$ and $(10, \infty)$
 - (C) (-∞,10)
 - (D) (-10,7)
 - (E) (-7,10)

- 8. A particle moves along a straight line. The graph of the particle's velocity v(t) at time t is shown above for $0 \le t \le m$, where j, k, l, and m are constants. The graph intersects the horizontal axis at t = 0, t = k, and t = m and has horizontal tangents at t = j and t = l. For what values of t is the speed of the particle decreasing?
 - (A) $j \le t \le l$
 - (B) $k \le t \le m$
 - (C) $j \le t \le k$ and $l \le t \le m$
 - (D) $0 \le t \le j$ and $k \le t \le l$
 - (E) $0 \le t \le j$ and $l \le t \le m$
- 13. Let f be a differentiable function such that f(0) = -5 and $f'(x) \le 3$ for all x. Of the following, which is not a possible value for f(2)?
 - (A) -10 (B) -5 (C) 0 (D) 1 (E) 2
- 24. The function g is given by $g(x) = 4x^3 + 3x^2 6x + 1$. What is the absolute minimum value of g on the closed interval [-2, 1]?
 - (A) -7 (B) $-\frac{3}{4}$ (C) 0 (D) 2 (E) 6

- 28. The function f is defined by $f(x) = \sin x + \cos x$ for $0 \le x \le 2\pi$. What is the x-coordinate of the point of inflection where the graph of f changes from concave down to concave up?
 - (A) $\frac{\pi}{4}$ (B) $\frac{3\pi}{4}$ (C) $\frac{5\pi}{4}$ (D) $\frac{7\pi}{4}$ (E) $\frac{9\pi}{4}$
- 82. The derivative of the function f is given by $f'(x) = x^3 4\sin(x^2) + 1$. On the interval (-2.5, 2.5), at which of the following values of x does f have a relative maximum?
 - (A) -1.970 and 0
 - (B) -1.467 and 1.075
 - (C) -0.475, 0.542, and 1.396
 - (D) -0.475 and 1.396 only
 - (E) 0.542 only

86. If f'(x) > 0 for all x and f''(x) < 0 for all x, which of the following could be a table of values for f?

(A)	x	f(x)	(B)	x	f(x)	(C)	x	f(x)	(D)	x	f(x)	(E)	x	f(x)
	-1	4		-1	4		-1	4		-1	4		-1	4
	0	3		0	4		0	5		0	5		0	6
	1	1		1	4		1	6		1	7		1	7

87. Let f be the function with first derivative given by $f'(x) = (3 - 2x - x^2)\sin(2x - 3)$. How many relative extrema does f have on the open interval -4 < x < 2?

88. The graph of a twice-differentiable function f is shown in the figure above. Which of the following is true?

- (A) f'(-1) < f'(1) < f'(0)
- (B) f'(-1) < f'(0) < f'(1)
- (C) f'(0) < f'(-1) < f'(1)
- (D) f'(1) < f'(-1) < f'(0)
- (E) f'(1) < f'(0) < f'(-1)

- 92. The function f is defined for all x in the closed interval [a, b]. If f does not attain a maximum value on [a, b], which of the following must be true?
 - (A) f is not continuous on [a, b].
 - (B) f is not bounded on [a, b].
 - (C) f does not attain a minimum value on [a, b].
 - (D) The graph of f has a vertical asymptote in the interval [a, b].
 - (E) The equation f'(x) = 0 does not have a solution in the interval [a, b].

2014 AP Practice Exam Multiple Choice

- 9. The function f has a first derivative given by $f'(x) = x(x-3)^2(x+1)$. At what values of x does f have a relative maximum?
 - (A) -1 only (B) 0 only (C) -1 and 0 only (D) -1 and 3 only (E) -1, 0, and 3
- 15. The function y = g(x) is differentiable and increasing for all real numbers. On what intervals is the function $y = g(x^3 6x^2)$ increasing?
 - (A) $(-\infty, 0]$ and $[4, \infty)$ only
 - (B) [0, 4] only
 - (C) $[2, \infty)$ only
 - (D) $[6, \infty)$ only
 - (E) $(-\infty, \infty)$
- 19. For what values of x does the graph of $y = 3x^5 + 10x^4$ have a point of inflection?
 - (A) $x = -\frac{8}{3}$ only (B) x = -2 only
 - (C) x = 0 only
 - (D) x = 0 and $x = -\frac{8}{3}$
 - (E) x = 0 and x = -2
- 22. Let *f* be the function defined by $f(x) = 2x^3 3x^2 12x + 18$. On which of the following intervals is the graph of *f* both decreasing and concave up?
 - (A) $(-\infty, -1)$ (B) $\left(-1, \frac{1}{2}\right)$ (C) $\left(-1, 2\right)$ (D) $\left(\frac{1}{2}, 2\right)$ (E) $(2, \infty)$

78. The function f is differentiable and increasing for all real numbers x, and the graph of f has exactly one point of inflection. Of the following, which could be the graph of f', the derivative of f?

80. The table above gives selected values of a function *f*. The function is twice differentiable with f''(x) > 0. Which of the following could be the value of f'(3)?

5

5.4

(A) 0.6 (B) 0.7 (C) 0.9 (D) 1.2 (I	(E) 1.5
------------------------------------	---------

Graph of f'

- 82. The figure above shows the graph of f', the derivative of function f, for -6 < x < 8. Of the following, which best describes the graph of f on the same interval?
 - (A) 1 relative minimum, 1 relative maximum, and 3 points of inflection
 - (B) 1 relative minimum, 1 relative maximum, and 4 points of inflection
 - (C) 2 relative minima, 1 relative maximum, and 2 points of inflection
 - (D) 2 relative minima, 1 relative maximum, and 4 points of inflection
 - (E) 2 relative minima, 2 relative maxima, and 3 points of inflection
- 91. Let F be a function defined for all real numbers x such that F'(x) > 0 and F''(x) > 0. Which of the following could be a table of values for F?

(D)	x	F(x)	(E)	x	F(x)
	1	-3		1	-3
	2	5		2	-4
	3	11		3	-3
	4	13		4	0