Unit 4-Contextual Applications of Differentiation

*Rectilinear Motion (Position, Velocity, Acceleration Problems)

-We designate position as $x(t), y(t)$, or $s(t)$.
-The derivative of position, $x^{\prime}(t)=v(t) \Rightarrow$ velocity.
-The derivative of velocity, $v^{\prime}(t)=a(t) \Rightarrow$ acceleration.
-We often talk about position, velocity, and acceleration when we're discussing particles moving along the x-axis or y-axis.
-A particle is at rest or is changing direction when $v(t)=0$.
-A particle is moving to the right or up when $v(t)>0$ and to the left or down when $v(t)<0$.

Related Rates

We take derivatives with respect to t which allows us to find velocity. Here is how you take a derivative with respect to t :
derivative of x is $\frac{d x}{d t}$, derivative of y^{2} is $2 y \frac{d y}{d t}$, derivative of r^{3} is $3 r^{2} \frac{d r}{d t}$, derivative of t^{2} is $2 t \frac{d t}{d t}=2 t$ V means volume ; $\frac{d V}{d t}$ means rate of change of volume (how fast the volume is changing) r means radius ; $\frac{d r}{d t}$ means rate of change of radius (how fast the radius is changing) $\frac{d x}{d t}$ is how fast x is changing; $\frac{d y}{d t}$ is how fast y is changing

Volume of a sphere
Surface Area of a sphere

$$
A=4 \pi r^{2}
$$

$$
\frac{d A}{d t}=
$$

Area of a circle

$$
A=\pi r^{2}
$$

$$
\frac{d A}{d t}=
$$

Circumference of a circle

$$
C=2 \pi r
$$

$$
\frac{d C}{d t}=
$$

EX \#1: The radius of a spherical balloon is increasing at the rate of $4 \mathrm{ft} / \mathrm{min}$. How fast is the surface area of the balloon changing when the radius is 3 ft .?

$$
A=4 \pi r^{2} \Rightarrow \frac{d A}{d t}=
$$

EX \#2: Water is poured into a cylinder with radius 5 at the rate of $10 \mathrm{in}^{3} / \mathrm{s}$. How fast is the height of the water changing when the height is 6 in ?

$$
\begin{aligned}
V & =\pi r^{2} h \\
\frac{d V}{d t} & =
\end{aligned}
$$

Unit 4-Contextual Applications of Differentiation

EX \#3: Water is leaking out of a cone with diameter 10 inches and height 9 inches at the rate of $7 \mathrm{in}^{3} / \mathrm{s}$. How fast is the height of the water changing when the height is 5 in?

$$
\begin{aligned}
& \frac{r}{h}=\quad r= \\
& V=\frac{1}{3} \pi r^{2} h
\end{aligned}
$$

EX \#4: A 17 foot ladder is leaning against the wall of a house. The base of the ladder is pulled away at 3 ft . per second.
a) How fast is the ladder sliding down the wall when the base of the ladder is $\mathbf{8} \mathbf{f t}$. from the wall? $x^{2}+y^{2}=17^{2} \Rightarrow y=\quad$ when $x=8$
b) How fast is the area of the triangle formed changing at this time?
$A=\frac{1}{2} x \cdot y$

c) How fast is the angle between the bottom of the ladder and the floor changing at this time?
$\sin \theta=\frac{y}{17}$

EX \#5: A person 6 ft . tall walks directly away from a streetlight that is $\mathbf{1 3}$ feet above the ground. The person is walking away from the light at a constant rate of $\mathbf{2}$ feet per second.
a) At what rate, in feet per second, is the length of the shadow changing?
$\frac{d x}{d t}=$
$\frac{d y}{d t}=?($ speed of the length of shadow $)$
Use similar triangles: $\frac{13}{x+y}=\frac{6}{y} \Rightarrow$

b) At what rate, in feet per second, is the tip of the shadow changing?

Tip of shadow is $x+y$, so speed of tip is

Unit 4-Contextual Applications of Differentiation

Local Linearity and Linearization

** This helps us \qquad a function using the tangent line to the curve.

If $f(a)=$ a number you know and x is very close to a, then you do approximate $f(x)$ by:

$$
f(x)=
$$

$\underline{\boldsymbol{E} \boldsymbol{X} \boldsymbol{1}}$ - What is the approximate value of $f(x)=\sqrt[3]{x} \quad$ when $x=8.2$?
$f(8)=$
$f^{\prime}(x)=$
$f^{\prime}(8)=$
$(x-a)=$
$f(8.2)=$

L'Hospital's Rule for Determining Limits of Indeterminate Forms

If you are taking the limit of a function that is indeterminate and equals, $0 / 0$ or infinity/infinity, simply keep taking the derivative of the top and bottom functions until you get a limit.

EX\#1 -

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

EX\#2 -

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x-1}
$$

Unit 4-Contextual Applications of Differentiation

Sample AP Problems:

2013 AP Practice Exam Multiple Choice

12. For which of the following does $\lim _{x \rightarrow \infty} f(x)=0$?
I. $f(x)=\frac{\ln x}{x^{99}}$
II. $f(x)=\frac{e^{x}}{\ln x}$
III. $f(x)=\frac{x^{99}}{e^{x}}$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only
13. The volume of a sphere is decreasing at a constant rate of 3 cubic centimeters per second. At the instant when the radius of the sphere is decreasing at a rate of 0.25 centimeter per second, what is the radius of the sphere?
(The volume V of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.)
(A) 0.141 cm
(B) 0.244 cm
(C) 0.250 cm
(D) 0.489 cm
(E) 0.977 cm
14. A particle moves along the x-axis so that at time $t \geq 0$ its position is given by $x(t)=\cos \sqrt{t}$. What is the velocity of the particle at the first instance the particle is at the origin?
(A) -1
(B) -0.624
(C) -0.318
(D) 0
(E) 0.065

2014 AP Practice Exam Multiple Choice

7. $\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{3 x}}$ is
(A) 0
(B) $\frac{2}{9}$
(C) $\frac{2}{3}$
(D) 1
(E) infinite
8. Functions w, x, and y are differentiable with respect to time and are related by the equation $w=x^{2} y$. If x is decreasing at a constant rate of 1 unit per minute and y is increasing at a constant rate of 4 units per minute, at what rate is w changing with respect to time when $x=6$ and $y=20$?
(A) -384
(B) -240
(C) -96
(D) 276
(E) 384
9. A particle moves on the x-axis so that at any time $t, 0 \leq t \leq 1$, its position is given by $x(t)=\sin (2 \pi t)+2 \pi t$. For what value of t is the particle at rest?
(A) 0
(B) $\frac{1}{8}$
(C) $\frac{1}{4}$
(D) $\frac{1}{2}$
(E) 1

Unit 4-Contextual Applications of Differentiation

90. A particle moves along a line so that its velocity is given by $v(t)=-t^{3}+2 t^{2}+2^{-t}$ for $t \geq 0$. For what values of t is the speed of the particle increasing?
(A) $(0,0.177)$ and $(1.256, \infty)$
(B) $(0,1.256)$ only
(C) $(0,2.057)$ only
(D) $(0.177,1.256)$ only
(E) $(0.177,1.256)$ and $(2.057, \infty)$
91. Let f be the function given by $f(x)=2 \cos x+1$. What is the approximation for $f(1.5)$ found by using the line tangent to the graph of f at $x=\frac{\pi}{2}$?
(A) -2
(B) 1
(C) $\pi-2$
(D) $4-\pi$
