Unit 3 - Differentiation: Composite, Implicit, and Inverse Functions

*Implicit Differentiation- function in terms of x's and y's must write $\frac{dy}{dx}$ everytime you take a deriv. of y

EX#1:
$$x^2y + y^3 + x^2 = 5$$

derivative ⇒

* Differentiating Inverse Functions

The functions f(x) and g(x) are inverses of each other. EX#1:

$$f(1) = 3$$
 $g(3) =$

$$f'(1) = 7$$
 $g'(3) =$

*Inverse Trig. Functions
$$y = \arcsin f(x)$$
 $y = \arctan f(x)$ $y = \arctan f(x)$

Sample AP Problems:

2013 AP Practice Exam Multiple Choice

4. Which of the following is an equation of the line tangent to the graph of $x^2 - 3xy = 10$ at the point (1, -3)?

(A)
$$y + 3 = -11(x - 1)$$

(B)
$$y + 3 = -\frac{7}{3}(x - 1)$$

(C)
$$y + 3 = \frac{1}{3}(x - 1)$$

(D)
$$y + 3 = \frac{7}{3}(x - 1)$$

(E)
$$y + 3 = \frac{11}{3}(x - 1)$$

17. If $\lim_{h\to 0} \frac{\arcsin(a+h) - \arcsin(a)}{h} = 2$, which of the following could be the value of a?

- (A) $\frac{\sqrt{2}}{2}$ (B) $\frac{\sqrt{3}}{2}$ (C) $\sqrt{3}$ (D) $\frac{1}{2}$ (E) 2

Unit 3 - Differentiation: Composite, Implicit, and Inverse Functions

- 18. If $\ln(2x + y) = x + 1$, then $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$

- (A) -2 (B) 2x + y 2 (C) 2x + y (D) 4x + 2y 2 (E) $y \frac{y}{x}$
- 23. Let f be the function defined by $f(x) = 2x + e^x$. If $g(x) = f^{-1}(x)$ for all x and the point (0,1) is on the graph of f, what is the value of g'(1)?
 - (A) $\frac{1}{2+e}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) 3 (E) 2+e

- 88. The graph of a twice-differentiable function f is shown in the figure above. Which of the following is true?
 - (A) f'(-1) < f'(1) < f'(0)
 - (B) f'(-1) < f'(0) < f'(1)
 - (C) f'(0) < f'(-1) < f'(1)
 - (D) f'(1) < f'(-1) < f'(0)
 - (E) f'(1) < f'(0) < f'(-1)

2014 AP Practice Exam Multiple Choice

- 25. If $y = x^2 2x$ and u = 2x + 1, then $\frac{dy}{du} = \frac{dy}{dx} = \frac{dy}{dx}$
 - (A) $\frac{2(x^2+x-1)}{(2x+1)^2}$ (B) $6x^2-3x-2$ (C) 4x (D) x-1 (E) $\frac{1}{x-1}$

x	f(x)	g(x)	f'(x)
-4	0	-9	5
-2	4	-7	4
0	6	-4	2
2	7	-3	1
4	10	-2	3

- 92. The table above gives values of the differentiable functions f and g, and f', the derivative of f, at selected values of x. If $g(x) = f^{-1}(x)$, what is the value of g'(4)?
- (A) $-\frac{1}{3}$ (B $-\frac{1}{4}$ (C) $-\frac{3}{100}$ (D $\frac{1}{4}$ (E) $\frac{1}{3}$