Unit 3 - Differentiation: Composite, Implicit, and Inverse Functions

*Implicit Differentiation- function in terms of x 's and y 's (must write $\frac{d y}{d x}$ everytime you take a deriv. of y)
EX\#1: $\quad x^{2} y+y^{3}+x^{2}=5$
derivative \Rightarrow

* Differentiating Inverse Functions

EX\#1: \quad The functions $f(x)$ and $g(x)$ are inverses of each other.

$$
\begin{array}{ll}
f(1)=3 & g(3)= \\
f^{\prime}(1)=7 & g^{\prime}(3)=
\end{array}
$$

*Inverse Trig. Functions $y=\arcsin f(x)$

$$
y=\arctan f(x)
$$

$$
y=\operatorname{arcsec} f(x)
$$

$$
y^{\prime}=\quad y^{\prime}=\quad y^{\prime}=
$$

EX\#1: | y | $=\arcsin x^{4}$ | EX\#2: | y |
| :--- | :--- | :--- | :--- |
| y^{\prime} | $=\arctan 2 x^{3}$ | EX\#3: | $y=\operatorname{arcsec} e^{x}$ |
| | $y^{\prime}=$ | $y^{\prime}=$ | |
| $y^{\prime}=$ | $y^{\prime}=$ | $y^{\prime}=$ | |

Sample AP Problems:

2013 AP Practice Exam Multiple Choice

4. Which of the following is an equation of the line tangent to the graph of $x^{2}-3 x y=10$ at the point $(1,-3)$?
(A) $y+3=-11(x-1)$
(B) $y+3=-\frac{7}{3}(x-1)$
(C) $y+3=\frac{1}{3}(x-1)$
(D) $y+3=\frac{7}{3}(x-1)$
(E) $y+3=\frac{11}{3}(x-1)$
5. If $\lim _{h \rightarrow 0} \frac{\arcsin (a+h)-\arcsin (a)}{h}=2$, which of the following could be the value of a ?
(A) $\frac{\sqrt{2}}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\sqrt{3}$
(D) $\frac{1}{2}$
(E) 2

Unit 3 - Differentiation: Composite, Implicit, and Inverse Functions

18. If $\ln (2 x+y)=x+1$, then $\frac{d y}{d x}=$
(A) -2
(B) $2 x+y-2$
(C) $2 x+y$
(D) $4 x+2 y-2$
(E) $y-\frac{y}{x}$
19. Let f be the function defined by $f(x)=2 x+e^{x}$. If $g(x)=f^{-1}(x)$ for all x and the point $(0,1)$ is on the graph of f, what is the value of $g^{\prime}(1)$?
(A) $\frac{1}{2+e}$
(B) $\frac{1}{3}$
(C) $\frac{1}{2}$
(D) 3
(E) $2+e$

20. The graph of a twice-differentiable function f is shown in the figure above. Which of the following is true?
(A) $f^{\prime}(-1)<f^{\prime}(1)<f^{\prime}(0)$
(B) $f^{\prime}(-1)<f^{\prime}(0)<f^{\prime}(1)$
(C) $f^{\prime}(0)<f^{\prime}(-1)<f^{\prime}(1)$
(D) $f^{\prime}(1)<f^{\prime}(-1)<f^{\prime}(0)$
(E) $f^{\prime}(1)<f^{\prime}(0)<f^{\prime}(-1)$

2014 AP Practice Exam Multiple Choice

25. If $y=x^{2}-2 x$ and $u=2 x+1$, then $\frac{d y}{d u}=$
(A) $\frac{2\left(x^{2}+x-1\right)}{(2 x+1)^{2}}$
(B) $6 x^{2}-3 x-2$
(C) $4 x$
(D) $x-1$
(E) $\frac{1}{x-1}$

x	$f(x)$	$g(x)$	$f^{\prime}(x)$
-4	0	-9	5
-2	4	-7	4
0	6	-4	2
2	7	-3	1
4	10	-2	3

92. The table above gives values of the differentiable functions f and g, and f^{\prime}, the derivative of f, at selected values of x. If $g(x)=f^{-1}(x)$, what is the value of $g^{\prime}(4)$?
(A) $-\frac{1}{3}$
(B) $-\frac{1}{4}$
(C) $-\frac{3}{100}$
(D) $\frac{1}{4}$
(E) $\frac{1}{3}$
