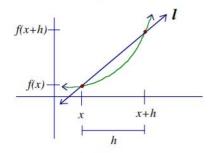
Definition of a Derivative:

Derivative at all points

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

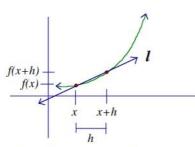


Line l is a secant line

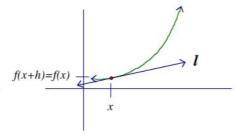
slope of secant line $l = \frac{f(x+h) - f(x)}{x+h-x}$

Derivative at the point (a, f(a))

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$



Line l is a secant line



Line l is a tangent line

 $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ means that the distance h is approaching 0 and the points get closer to each other and the two points become the same point and line l is now a tangent line.

The derivative of a function finds the slope of the tangent line!

EX #1:

$$f'(x) = \lim_{h \to 0} \frac{3(x+h)^2 - 3x^2}{h} =$$

EX #2:

$$f'(x) = \lim_{h \to 0} \frac{4(2+h)^3 - 32}{h} =$$

** The derivative finds the _____ to the tangent line.

** The normal line is ______ to the tangent line.

EX #3: $f(x) = 5x^2$ Find equation of the tangent line and normal line at x = 3.

Equation of a Line (point - slope form): $y - y_1 = m(x - x_1)$

Equation of the tangent line:

Equation of the normal line:

When you see these problems, you need to take a derivative of the given equation.

EX#1:
$$\lim_{h\to 0} \frac{\sin(x+h)-\sin x}{h} =$$

EX#2:
$$\lim_{h\to 0} \frac{3(x+h)^4-3x^4}{h} =$$

EX#3:
$$\lim_{h\to 0} \frac{5(2+h)^3-40}{h} =$$

EX#4:
$$\lim_{h\to 0} \frac{(1+h)^4-1}{h} =$$

Derivative Formulas:

$$y = x^n$$

$$y = 2x^5$$

*Product Rule

$$y = f(x) \cdot g(x) \qquad \qquad y' =$$

$$y' =$$

EX #1:
$$y = x^2 \sin x$$

*Quotient Rule

$$y = \frac{f(x)}{g(x)}$$

EX #1:
$$y = \frac{\sin x}{x^3}$$

*Chain Rule

$$y = (f(x))^n$$

OR
$$y = f(g(x))$$

EX #1:
$$y = (x^2 + 1)^3$$

*Trig. Functions (Take the derivative of the trig. function times the derivative of the angle)

Function	Derivative		Example
$\sin x$		$\frac{d}{dx}\sin(x^2) =$	
$\cos x$	я	$\frac{d}{dx}\cos^2(3x^3) =$	
tan x		$\frac{dx}{dx}\tan(25x) =$	
csc x		$\frac{d}{dx}\csc(3x^4) =$	
sec x		$\frac{d}{dx}\sec(\sin x) =$	
cot x		$\frac{d}{dx}\cot\left(x^{5}\right) =$	

*Natural Log

$$y = ln(f(x))$$

EX#1: $y = ln(x^2 + 1)$ y' =

EX#2:
$$y = ln(\sin x)$$
 $y' =$

EX#3:
$$y = log x^2$$
 change of base $\Rightarrow y = \frac{ln x^2}{ln 10}$ $y' =$

*Constant Variable $y = a^{f(x)}$ y' =

$$\mathbf{v} = a^{f(x)} \qquad \mathbf{v'}$$

(3 steps: itself, derivative of exponent, ln of base)

$$\mathbf{EX#1:} \quad y = 2^x$$

$$y' =$$

EX#2:
$$y = 3^{x^2}$$
 $y' = 3^{x^2}$

$$\mathbf{EX#3:} \quad y = e^{5x}$$
$$y' =$$

Sample AP Problems:

2013 AP Practice Exam Multiple Choice

2. If
$$f(x) = x^3 - x^2 + x - 1$$
, then $f'(2) =$

- (A) 10
- (B) 9
- (C) 7 (D) 5 (E) 3

7. Let f be the function given by $f(x) = x^3 - 6x^2 + 8x - 2$. What is the instantaneous rate of change of f at x = 3?

- (A) -5 (B) $-\frac{15}{4}$ (C) -1 (D) 6 (E) 17

$$f(x) = \begin{cases} x+b & \text{if } x \le 1\\ ax^2 & \text{if } x > 1 \end{cases}$$

14. Let f be the function given above. What are all values of a and b for which f is differentiable at x = 1?

(A)
$$a = \frac{1}{2}$$
 and $b = -\frac{1}{2}$

(B)
$$a = \frac{1}{2}$$
 and $b = \frac{3}{2}$

(C)
$$a = \frac{1}{2}$$
 and b is any real number

(D)
$$a = b + 1$$
, where b is any real number

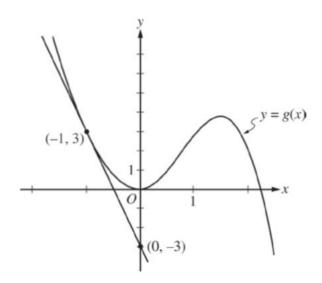
(E) There are no such values of
$$a$$
 and b .

f(3)	g(3)	f'(3)	g'(3)
-1	2	5	-2

- 15. The table above gives values for the functions f and g and their derivatives at x = 3. Let k be the function given by $k(x) = \frac{f(x)}{g(x)}$, where $g(x) \neq 0$. What is the value of k'(3)?
 - (A) $-\frac{5}{2}$ (B) -2 (C) 2 (D) 3 (E) 8

- 16. If $y = 5x\sqrt{x^2 + 1}$, then $\frac{dy}{dx}$ at x = 3 is

- (A) $\frac{5}{2\sqrt{10}}$ (B) $\frac{15}{\sqrt{10}}$ (C) $\frac{15}{2\sqrt{10}} + 5\sqrt{10}$ (D) $\frac{45}{\sqrt{10}} + 5\sqrt{10}$ (E) $\frac{45}{\sqrt{10}} + 15\sqrt{10}$



- 19. The figure above shows the graph of the function g and the line tangent to the graph of g at x = -1. Let h be the function given by $h(x) = e^x \cdot g(x)$. What is the value of h'(-1)?

- (A) $\frac{9}{e}$ (B) $\frac{-3}{e}$ (C) $\frac{-6}{e}$ (D) $\frac{-6}{e} \frac{3}{e^2}$ (E) -6

2014 AP Practice Exam Multiple Choice

- 2. What is the slope of the line tangent to the graph of $y = \ln(2x)$ at the point where x = 4?
- (A) $\frac{1}{8}$ (B) $\frac{1}{4}$ (C) $\frac{1}{2}$ (D) $\frac{3}{4}$ (E) 4
- 3. If $f(x) = 4x^{-2} + \frac{1}{4}x^2 + 4$, then f'(2) =

 - (A) -62 (B) -58 (C) -3 (D) 0 (E) 1

$$6. \qquad \frac{d}{dx} \left(\sin^3 \left(x^2 \right) \right) =$$

(A)
$$\cos^3(x^2)$$

(B)
$$3\sin^2(x^2)$$

(C)
$$6x\sin^2(x^2)$$

(D)
$$3\sin^2(x^2)\cos(x^2)$$

(E)
$$6x\sin^2(x^2)\cos(x^2)$$

13.
$$\frac{d}{dx} \left(\frac{x+1}{x^2+1} \right) =$$

(A)
$$\frac{x^2 + 2x - 1}{\left(x^2 + 1\right)^2}$$

(B)
$$\frac{-x^2 - 2x + 1}{x^2 + 1}$$

(C)
$$\frac{-x^2-2x+1}{(x^2+1)^2}$$

(D)
$$\frac{3x^2 + 2x + 1}{\left(x^2 + 1\right)^2}$$

(E)
$$\frac{1}{2x}$$

17. If
$$f(x) = ae^{-ax}$$
 for $a > 0$, then $f'(x) =$

(A)
$$e^{-ax}$$

(B)
$$ae^{-ax}$$

(C)
$$a^2 e^{-ax}$$

(D)
$$-ae^{-ax}$$

(E)
$$-a^2e^{-ax}$$

20.
$$\lim_{x \to 2} \frac{\ln(x+3) - \ln(5)}{x-2}$$
 is

- (A) 0 (B) $\frac{1}{5}$ (C) $\frac{1}{2}$ (D) 1 (E) nonexistent

$$f(x) = \begin{cases} 3x + 5 & \text{when } x < -1 \\ -x^2 + 3 & \text{when } x \ge -1 \end{cases}$$

- 23. If f is the function defined above, then f'(-1) is
 - (A) -3

- (B) -2 (C) 2 (D) 3 (E) nonexistent
- 86. Line ℓ is tangent to the graph of $y = e^x$ at the point (k, e^k) . What is the positive value of k for which the y-intercept of ℓ is $\frac{1}{2}$?
 - (A) 0.405
 - (B) 0.768
 - (C) 1.500
 - (D) 1.560
 - (E) There is no such value of k.