
### **AP Chemistry 2015**

Answer the following questions about the solubility of  $Ca(OH)_2$  ( $K_{sp} = 1.3 \times 10^{-6}$ ).

- (a) Write a balanced chemical equation for the dissolution of Ca(OH)<sub>2</sub>(s) in pure water.
- (b) Calculate the molar solubility of Ca(OH)<sub>2</sub> in 0.10 M Ca(NO<sub>3</sub>)<sub>2</sub>.
- (c) In the box below, complete a particle representation diagram that includes four water molecules with proper orientation around the Ca2+ ion.

Represent water molecules as .





# **AP Chemistry 2016**

$$C_6H_5OH(aq) + H_2O(l) \rightleftharpoons C_6H_5O^-(aq) + H_3O^+(aq)$$
  $K_a = 1.12 \times 10^{-10}$ 

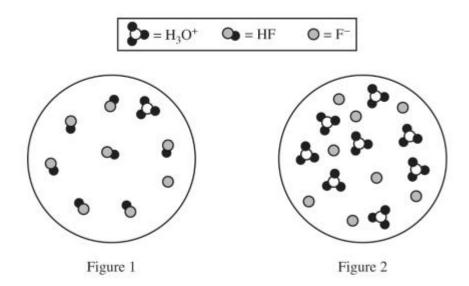
- 4. Phenol is a weak acid that partially dissociates in water according to the equation above.
  - (a) What is the pH of a 0.75 M C<sub>6</sub>H<sub>5</sub>OH(aq) solution?
  - (b) For a certain reaction involving C<sub>6</sub>H<sub>5</sub>OH(aq) to proceed at a significant rate, the phenol must be primarily in its deprotonated form,  $C_6H_5O^-(aq)$ . In order to ensure that the  $C_6H_5OH(aq)$  is deprotonated, the reaction must be conducted in a buffered solution. On the number scale below, circle each pH for which more than 50 percent of the phenol molecules are in the deprotonated form (C<sub>6</sub>H<sub>5</sub>O<sup>-</sup>(aq)). Justify your answer.
  - 2 10 12 11 13 14

#### **AP Chemistry 2016**

$$Ba^{2+}(aq) + EDTA^{4-}(aq) \rightleftharpoons Ba(EDTA)^{2-}(aq)$$
  $K = 7.7 \times 10^7$ 

- 6. The polyatomic ion C<sub>10</sub>H<sub>12</sub>N<sub>2</sub>O<sub>8</sub><sup>4-</sup> is commonly abbreviated as EDTA<sup>4-</sup>. The ion can form complexes with metal ions in aqueous solutions. A complex of EDTA<sup>4-</sup> with Ba<sup>2+</sup> ion forms according to the equation above. A 50.0 mL volume of a solution that has an EDTA<sup>4-</sup>(aq) concentration of 0.30 M is mixed with 50.0 mL of 0.20 M Ba(NO<sub>3</sub>)<sub>2</sub> to produce 100.0 mL of solution.
  - (a) Considering the value of K for the reaction, determine the concentration of Ba(EDTA)<sup>2-</sup>(aq) in the 100.0 mL of solution. Justify your answer.
  - (b) The solution is diluted with distilled water to a total volume of 1.00 L. After equilibrium has been reestablished, is the number of moles of Ba<sup>2+</sup>(aq) present in the solution greater than, less than, or equal to the number of moles of Ba<sup>2+</sup>(aq) present in the original solution before it was diluted? Justify your answer.

### **AP Chemistry 2017**


$$N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$$

At high temperatures,  $N_2(g)$  and  $O_2(g)$  can react to produce nitrogen monoxide, NO(g), as represented by the equation above.

- (a) Write the expression for the equilibrium constant,  $K_p$ , for the forward reaction.
- (b) A student injects N<sub>2</sub>(g) and O<sub>2</sub>(g) into a previously evacuated, rigid vessel and raises the temperature of the vessel to 2000°C. At this temperature the initial partial pressures of N<sub>2</sub>(g) and O<sub>2</sub>(g) are 6.01 atm and 1.61 atm, respectively. The system is allowed to reach equilibrium. The partial pressure of NO(g) at equilibrium is 0.122 atm. Calculate the value of K<sub>p</sub>.

$$HF(aq) + H_2O(l) \rightleftharpoons F^-(aq) + H_3O^+(aq)$$

- 5. The ionization of HF(aq) in water is represented by the equation above. In a 0.0350 M HF(aq) solution, the percent ionization of HF is 13.0 percent.
  - (a) Two particulate representations of the ionization of HF molecules in the 0.0350 M HF(aq) solution are shown below in Figure 1 and Figure 2. Water molecules are not shown. Explain why the representation of the ionization of HF molecules in water in Figure 1 is more accurate than the representation in Figure 2. (The key below identifies the particles in the representations.)



- (b) Use the percent ionization data above to calculate the value of  $K_a$  for HF.
- (c) If 50.0 mL of distilled water is added to 50.0 mL of 0.035 M HF(aq), will the percent ionization of HF(aq) in the solution increase, decrease, or remain the same? Justify your answer with an explanation or calculation.

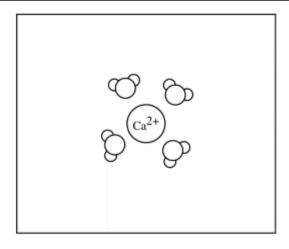
## **AP Chemistry 2015 Solution Guide**

 $Ca(OH)_2 \rightleftharpoons Ca^{2+} + 2OH^-$ 

1 point is earned for the correct equation.

 $K_{sp} = [{\rm Ca^{2+}}] \; [{\rm OH^-}]^2$ 

 $1.3 \times 10^{-6} = (0.10 + x) (2x)^2 \approx (0.10) 4x^2$  [assuming x << 0.10]


 $1.3 \times 10^{-5} = 4x^2$ 

x = 0.0018 M

Molar solubility of  $Ca(OH)_2 = 0.0018 M$ 

1 point is earned for the correct stoichiometry and setup.

1 point is earned for the final answer.



[The diagram should show the oxygen side of the water molecules oriented closer to the Ca<sup>2+</sup> ion.]

1 point is earned for a correct diagram that shows at least three of the four water molecules oriented as described.

### **AP Chemistry 2016 Solution Guide**

$$K_a = \frac{[\text{C}_6\text{H}_5\text{O}^-][\text{H}_3\text{O}^+]}{[\text{C}_6\text{H}_5\text{OH}]}$$

$$1.12 \times 10^{-10} = \frac{x^2}{(0.75 - x)} \qquad \text{Assume that } x << 0.75.$$

$$x^2 = 8.4 \times 10^{-11}$$

$$x = \sqrt{8.4 \times 10^{-11}}$$

$$x = 9.2 \times 10^{-6} M$$

$$p\text{H} = -\log[\text{H}^+] = -\log(9.2 \times 10^{-6}) = 5.04$$

1 point is earned for a correct setup and calculation of [H<sup>+</sup>].

l point is earned for the correct setup and calculation of pH based on a correct setup for the [H+] calculation.

Numbers 10 through 14 should be circled.

When pH > p $K_a$ , the deprotonated form will predominate. p $K_a$  = -log(1.12 × 10<sup>-10</sup>) = 9.95, therefore at pH 10 and above, [C<sub>6</sub>H<sub>5</sub>O<sup>-</sup>] > [C<sub>6</sub>H<sub>5</sub>OH]. 1 point is earned for circling 10-14.

1 point is earned for the justification.

### **AP Chemistry 2016 Solution Guide**

Based on the K value, the reaction goes essentially to completion. Ba<sup>2+</sup>(aq) is the limiting reactant.

The concentration of  $Ba^{2+}$  when the solutions are first mixed but before any reaction takes place is 0.20 M/2 = 0.10 M.

Thus the equilibrium concentration of Ba(EDTA) $^{2-}(aq)$  is 0.10 M.

l point is earned for indicating that the equilibrium concentration of Ba(EDTA)<sup>2-</sup>(aq) is the same as the original concentration of Ba<sup>2+</sup> when the solutions are mixed.

l point is earned for the concentration with appropriate calculations.

The number of moles of  $Ba^{2+}(aq)$  increases because the percent dissociation of  $Ba(EDTA)^{2-}(aq)$  increases as the solution is diluted.

OR

A mathematical justification such as the following:

The dilution from 100.0 mL to 1.00 L reduces the concentrations of all species to one tenth of their original values.

Immediately after the dilution, the reaction quotient, Q, can be determined as shown below.

$$Q = \frac{\frac{1}{10} [\text{Ba}(\text{EDTA})^{2-}]}{\frac{1}{10} [\text{Ba}^{2+}] \times \frac{1}{10} [\text{EDTA}^{4-}]} = 10K$$

Because Q > K, the net reaction will produce more reactants to move toward equilibrium, so the number of moles of  $Ba^{2+}(aq)$  will be greater than the number in the original solution.

1 point is earned for stating that the number of moles of Ba<sup>2+</sup>(aq) will increase.

> point is earned for a valid justification.

### **AP Chemistry 2017 Solution Guide**

$$K_p = \frac{{(P_{\rm NO})}^2}{(P_{\rm N_2})(P_{\rm O_2})}$$

1 point is earned for a correct  $K_p$  expression.

|             | $N_2(g) +$ | $O_2(g) \rightleftharpoons$ | $2~\mathrm{NO}(g)$ |
|-------------|------------|-----------------------------|--------------------|
| Initial     | 6.01       | 1.61                        | 0                  |
| Change      | -x         | -x                          | +2x                |
| Equilibrium | 6.01-x     | 1.61-x                      | 0.122              |

 $2x = 0.122 \text{ atm} \implies x = 0.0610 \text{ atm}$ 

$$K_p = \frac{(0.122)^2}{(5.95)(1.55)} = 0.00161$$

1 point is earned for the correct equilibrium partial pressures of reactants and products (may be implicit).

1 point is earned for the correct calculation of  $K_p$ .

### **AP Chemistry 2018 Solution Guide**

HF is a weak acid and is only partially ionized. This fact is consistent with Figure 1, which shows that one out of eight (~13%) HF molecules is ionized (to form one H<sub>2</sub>O+ and one F-).

OR

Figure 2 cannot represent HF because it represents 100% ionization of the acid.

1 point is earned for a valid explanation.

Assume  $[H_3O^+] = [F^-]$  in HF(aq).

$$\frac{[\text{H}_3\text{O}^+]}{0.0350\,M} = 0.130 \implies [\text{H}_3\text{O}^+] = 0.00455\,M$$

$$\mathrm{HF}(aq) + \mathrm{H_2O}(l) \rightleftarrows \mathrm{F^-}(aq) + \mathrm{H_3O^+}(aq)$$

$$K_a = \frac{[\text{H}_3\text{O}^+][\text{F}^-]}{[\text{HF}]} = \frac{(0.00455)^2}{(0.0304)} = 6.81 \times 10^{-4}$$

1 point is earned for the correct calculation of [H<sub>3</sub>O<sup>+</sup>].

1 point is earned for a value of  $K_a$  consistent with the calculated value of [H<sub>3</sub>O<sup>+</sup>].

The percent ionization of HF in the solution would increase.

Doubling the volume of the solution decreases the initial concentration of each species by one-half; therefore,

$$Q = \frac{(\frac{1}{2}[\mathrm{H}_3\mathrm{O}^+]_i)(\frac{1}{2}[\mathrm{F}^-]_i)}{\frac{1}{2}[\mathrm{HF}]_i} = \frac{1}{2}K_a \ \Rightarrow \ Q < K_a.$$

Consequently the equilibrium position will shift toward the products and increase the percent ionization.

OR

New volume = twice original volume, thus new [HF]<sub>i</sub> =  $\frac{0.035}{2}$  = 0.0175 M

$$K_a = \frac{[\text{H}_3\text{O}^+][\text{F}^-]}{[\text{HF}]} = 6.81 \times 10^{-4} \text{ (value from part (b))}$$

Let 
$$[H_3O^+] = [F^-] = x$$

Then 
$$6.81 \times 10^{-4} = \frac{(x)(x)}{(0.0175 - x)} \approx \frac{x^2}{(0.0175)} \implies x \approx 0.00345 M$$

Percent ionization = 
$$\frac{0.00345 \, M}{0.0175 \, M} \times 100 = 20.\%$$

20.% > 13.0%; therefore, the percent ionization increases.

I point is earned for a correct answer <u>and</u> a valid explanation or calculation.