CALCULATOR PROBLEMS

2023
1 - Given a Table of Rate of Change

- Interpretation of Integral in Terms of Units
- Approximation with Right Riemann Sum
- Mean Value Theorem
- New Function - Find Average Value
- Take Derivative
- Interpretation of new function

2 - Given a Function (Rate or $\mathrm{v}(\mathrm{t})$)

- Change of Direction
- $a(t)$
- Speed Up or Slow Down
- Displacement
- Total Distance

2022

1 - Given Function (Rate or $\mathrm{f}^{\prime}(\mathrm{x})$)

- Area
- Average Rate
- Rate Inc/Dec
- Absolute Max/Min

2 - Given Graph of Two Functions

- Find Intercepts
- Area Between Curves
- Distance Between Curves Inc/Dec
- Volume of Cross Sections as Squares
- Rate of Change of Distance Between Curves

1 - Given Table

- Rate of Change or Slope
- Approximation with Right Riemann Sum
- Approximation is Overestimate/Underestimate
- New Function - Find Average Rate of Change = Instantaneous

2 - Given $v(t)$ Functions

- Position
- Moving Towards/Away From Origin
- Acceleration
- Speed Inc/Dec
- Total Distance

2019
1 - Given Entering Rate and Leaving Rate Functions ($\mathrm{E}(\mathrm{t})$ and $\mathrm{L}(\mathrm{t})$)

- Total Entering
- Average Rate of Entering
- Absolutely Max/Min
- Rate of Change of Inc/Dec

2 - Given Table (Rate)

- MVT
- Approximate by Trapezoid Riemann Sums
- New Function - Distance
- New Function - Displacement

1 - Given a Function (Rate)

- Displacement (Amount Changed)
- Position (Amount at One Point)
- Relative Minimum
- Absolute Minimum

2 - Given $v(t)$ Function

- Acceleration
- Position
- Displacement
- Distance
- New Position Functions - Find Time When Velocities are Equal

2023
3 - Given Differential (dy/dx)

- Tangent Line
- Approximation Using Tangent Line
- Approximation Underestimate/Overestimate
- Particular Solution by Separation of Variables

4 - Given Graph of $f^{\prime}(x)$

- Relative Min/Max
- Concavity
- L'Hospital's
- Absolute Min/Max

5 - Given Table of $f(x)$ and $f^{\prime}(x)$ Values

- Chain Rule
- Product Rule
- Fundamental Theorem of Calculus
- Increasing/Decreasing

6 -Given an Equation

- Implicit Differentiation to Find dy/dx
- Equation for Tangent Line
- Tangent Line Horizontal
- Tangent Line Vertical
- $\quad d y / d t=(d y / d x)(d x / d t)$

3 - Given Graph of $f^{\prime}(x)$

- Area of $f(x)$ Values
- Points of Inflection
- Increasing/Decreasing
- Absolute Max/Min

4 - Given Table

- Approximate Rate of Change
- IVT
- Approximate by Right Riemann Sum
- Implicit Differentiation Using Product Rule

5 - Given Differential

- Slope Field
- Equation for Tangent Line
- Approximation Using Tangent Line
- Underestimate/Overestimate
- Particular Solution by Separation of Variables

6 - Given Position and Velocity Functions

- Velocity
- Acceleration
- Position

3 - Given Function f(x)

- Area of $f(x)$
- Volume Rotated above x-axis

4 - Given Graph of $f(x)$

- Fundamental Theorem of Calculus
- Concavity
- Product Rule
- L'Hospital's
- MVT

5 - Given an Equation

- Implicit Differentiation to Find dy/dx
- Equation for Tangent Line
- Line Tangent Horizontal
- Relative Min/Max

6 - Given Differential

- Slope Field
- Interpretation of Limit
- Particular Solution by Separation of Variables

3 - Graph of $f(x)$

- Area Under Curve
- Area Using Fundamental Theorem of Calculus
- Absolute Min
- L'Hospital's

4 - Given an Equation and a Rate Differential

- Implicit Differentiation to Find Rate
- Particular Solution by Separation of Variables

5 - Given a Graph of Functions

- Area Between Two Curves
- Volume of Cross Sections Given Area Function
- Volume Rotated Around a Horizontal Line Above Functions

6 - Given a Line Tangent to a Graph

- Product Rule with Chain Rule
- L'Hospital's
- IVT

3 - Given Graph of $g(x)$, the Derivative of $f(x)$

- Evaluate $\mathrm{f}(\mathrm{x})$
- Evaluate Integral of $g(x)$
- Increasing and Concave Up
- Point of Inflections

4 - Given Table of $f(x)$

- Estimate Rate of Change of $f(x)$
- Interpretation of Rate of Change of $f(x)$
- MVT
- Approximation by Trapezoidal Reimann Sums
- New Function - Differential Rate of Change

5 - Given Function f(x)

- Average Rate of Change
- Slope of the Tangent Line by Product Rule
- Absolute Minimum
- L'Hospital's

6 - Given Differential

- Slope Field
- Equation to the Line Tangent
- Approximate Using Tangent Line
- Particular Solution by Separation of Variables

