CALCULATOR PROBLEMS

2023

- 1 Given a Table of Rate of Change
 - Interpretation of Integral in Terms of Units
 - Approximation with Right Riemann Sum
 - Mean Value Theorem
 - New Function Find Average Value
 - Take Derivative
 - Interpretation of new function
- 2 Given a Function (Rate or v(t))
 - Change of Direction
 - a(t)
 - Speed Up or Slow Down
 - Displacement
 - Total Distance

2022

- 1 Given Function (Rate or f'(x))
 - Area
 - Average Rate
 - Rate Inc/Dec
 - Absolute Max/Min
- 2 Given Graph of Two Functions
 - Find Intercepts
 - Area Between Curves
 - Distance Between Curves Inc/Dec
 - Volume of Cross Sections as Squares
 - Rate of Change of Distance Between Curves

- 1 Given Table
 - Rate of Change or Slope
 - Approximation with Right Riemann Sum
 - Approximation is Overestimate/Underestimate
 - New Function Find Average Rate of Change = Instantaneous
- 2 Given v(t) Functions
 - Position
 - Moving Towards/Away From Origin
 - Acceleration
 - Speed Inc/Dec
 - Total Distance

2019

- 1 Given Entering Rate and Leaving Rate Functions (E(t) and L(t))
 - Total Entering
 - Average Rate of Entering
 - Absolutely Max/Min
 - Rate of Change of Inc/Dec

2 - Given Table (Rate)

- MVT
- Approximate by Trapezoid Riemann Sums
- New Function Distance
- New Function Displacement

- 1 Given a Function (Rate)
 - Displacement (Amount Changed)
 - Position (Amount at One Point)
 - Relative Minimum
 - Absolute Minimum

2 - Given v(t) Function

- Acceleration
- Position
- Displacement
- Distance
- New Position Functions Find Time When Velocities are Equal

NON-CALCULATOR PROBLEMS

2023

- 3 Given Differential (dy/dx)
 - Tangent Line
 - Approximation Using Tangent Line
 - Approximation Underestimate/Overestimate
 - Particular Solution by Separation of Variables
- 4 Given Graph of f'(x)
 - Relative Min/Max
 - Concavity
 - L'Hospital's
 - Absolute Min/Max
- 5 Given Table of f(x) and f'(x) Values
 - Chain Rule
 - Product Rule
 - Fundamental Theorem of Calculus
 - Increasing/Decreasing
- 6 -Given an Equation
 - Implicit Differentiation to Find dy/dx
 - Equation for Tangent Line
 - Tangent Line Horizontal
 - Tangent Line Vertical
 - dy/dt = (dy/dx)(dx/dt)

- 3 Given Graph of f'(x)
 - Area of f(x) Values
 - Points of Inflection
 - Increasing/Decreasing
 - Absolute Max/Min

4 - Given Table

- Approximate Rate of Change
- IVT
- Approximate by Right Riemann Sum
- Implicit Differentiation Using Product Rule

5 - Given Differential

- Slope Field
- Equation for Tangent Line
- Approximation Using Tangent Line
- Underestimate/Overestimate
- Particular Solution by Separation of Variables
- 6 Given Position and Velocity Functions
 - Velocity
 - Acceleration
 - Position

- 3 Given Function f(x)
 - Area of f(x)
 - Volume Rotated above x-axis
- 4 Given Graph of f(x)
 - Fundamental Theorem of Calculus
 - Concavity
 - Product Rule
 - L'Hospital's
 - MVT
- 5 Given an Equation
 - Implicit Differentiation to Find dy/dx
 - Equation for Tangent Line
 - Line Tangent Horizontal
 - Relative Min/Max

6 - Given Differential

- Slope Field
- Interpretation of Limit
- Particular Solution by Separation of Variables

- 3 Graph of f(x)
 - Area Under Curve
 - Area Using Fundamental Theorem of Calculus
 - Absolute Min
 - L'Hospital's
- 4 Given an Equation and a Rate Differential
 - Implicit Differentiation to Find Rate
 - Particular Solution by Separation of Variables
- 5 Given a Graph of Functions
 - Area Between Two Curves
 - Volume of Cross Sections Given Area Function
 - Volume Rotated Around a Horizontal Line Above Functions
- 6 Given a Line Tangent to a Graph
 - Product Rule with Chain Rule
 - L'Hospital's
 - IVT

- 3 Given Graph of g(x), the Derivative of f(x)
 - Evaluate f(x)
 - Evaluate Integral of g(x)
 - Increasing and Concave Up
 - Point of Inflections

4 - Given Table of f(x)

- Estimate Rate of Change of f(x)
- Interpretation of Rate of Change of f(x)
- MVT
- Approximation by Trapezoidal Reimann Sums
- New Function Differential Rate of Change
- 5 Given Function f(x)
 - Average Rate of Change
 - Slope of the Tangent Line by Product Rule
 - Absolute Minimum
 - L'Hospital's
- 6 Given Differential
 - Slope Field
 - Equation to the Line Tangent
 - Approximate Using Tangent Line
 - Particular Solution by Separation of Variables