$$
\begin{gathered}
\text { Centripetal Force }=F_{C}=\frac{m v^{2}}{r} \\
\text { frequency }=f=\frac{1}{\operatorname{Period}(T)} \\
F_{G}=G \frac{m_{1} m_{2}}{r^{2}} \text { where } G=6.67 \times 10-11 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
\end{gathered}
$$

Questions 1-3 refer to the diagram below. The diagram represents a mass, m, being swung clockwise at a constant speed in a horizontal circle.

1. What point shows the direction of the net force acting on the mass?
(A) Point A
(B) Point B
(C) Point C
(D) Point D
2. What point shows the direction of the velocity of the mass?
(A) Point A
(B) Point B
(C) Point C
(D) Point D
3. What point shows the acceleration acting on the mass?
(A) Point A
(B) Point B
(C) Point C
(D) Point D

Questions 4-6 refer to the diagram below. The diagram represents a student whirling a stopper attached to the end of a 2.0 m string overhead in a horizontal circle.

(Not drawn to scale)
4. If the stopper has a mass of 0.05 kg and is whirled at a constant speed of $5 \mathrm{~m} / \mathrm{s}$ on the 2.0 m string, what is the force of tension on the string?
(A) 0.125 N
(B) 0.625 N
(C) 1.25 N
(D) 1.75 N
5. If the stopper is moving at an orbital period of 2.5 seconds, what is its frequency in cycles per second?
(A) 0.1 cycles/second
(B) 0.2 cycles/second
(C) 0.3 cycles/second
(D) 0.4 cycles/second

6. A car is traveling a constant speed and makes a clockwise turn as shown above, around a circular path. Where is the direction of the car's acceleration?
(A) North
(B) South
(C) West
(D) East
7. A 0.50 -kilogram object moves in a horizontal circular path with a radius of 0.25 meter at a constant speed of 4.0 meters per second. What is the magnitude of the object's centripetal force?
(A) 32 N
(B) 24 N
(C) 16 N
(D) 8 N
8. A 2.0 kg ball is attached to a 3.0 meter long string and is moved at a constant speed in a horizontal and circular motion. The force on the string is measured to be 24 N . What speed is the ball moving at?
(A) $3 \mathrm{~m} / \mathrm{s}$
(B) $6 \mathrm{~m} / \mathrm{s}$
(C) $18 \mathrm{~m} / \mathrm{s}$
(D) $36 \mathrm{~m} / \mathrm{s}$

Questions 9-10 refer to the diagram below of the two bowling balls, A and B.

9. A bowling ball labeled A of mass 7.00 kg is placed 2.00 m away from a 14.0 kg bowling ball labeled B . What is the gravitational force that bowling ball A experiences due to bowling ball B ?
(A) $8.17 \times 10^{-9} \mathrm{~N}$
(B) $1.63 \times 10^{-9} \mathrm{~N}$
(C) $8.17 \times 10^{-10} \mathrm{~N}$
(D) $1.17 \times 10^{-10} \mathrm{~N}$
10. What is the gravitational force that bowling ball B experiences due to bowling ball A ?
(A) $8.17 \times 10^{-9} \mathrm{~N}$
(B) $1.63 \times 10^{-9} \mathrm{~N}$
(C) $8.17 \times 10^{-10} \mathrm{~N}$
(D) $1.17 \times 10^{-10} \mathrm{~N}$

