In all problems below, neglect air resistance and friction. If using the acceleration of gravity on Earth, you can round $g = 10 \text{ m/s}^2$.

Force of gravity =
$$F_g = mg$$

(Net Force)
$$\sum F = ma$$

- 1. A 2.0-kilogram cart is rolling at a speed of 2.50 m/s. If the speed of the cart is doubled to 5.00 m/s, the inertia of the cart is:
 - (A) Halved
 - (B) Doubled
 - (C) Quadrupled
 - (D) Unchanged
- 2. Which object has the greatest inertia?
 - (A) A 30 kg mass not moving
 - (B) A 20 kg mass moving at 15 m/s
 - (C) A 15 kg mass moving at 1 m/s
 - (D) A 5 kg mass moving at 40 m/s
- 3. Which of the following forces represents a field force (NOT a contact force)?
 - (A) Force of friction
 - (B) Normal force
 - (C) Force of gravity
 - (D) Force of pushing
- 4. If there are no forces acting upon an object that is moving, what will happen to the object?
 - (A) The object will accelerate
 - (B) The object will continue moving with a constant velocity
 - (C) The object will change its direction
 - (D) The object will slow down and eventually stop
- 5. A 7.5 kg object is sitting on a table. What is the approximate force of gravity acting upon this object? (A) 7.5 N
 - (B) 55 N
 - (C) 75 N
 - (D)750 N

- 6. A person is sitting on a balance that registers the normal force. The balance reads 800 N. What is the approximate mass of the person?
 - (A)40 kg
 - (B) 80 kg
 - (C) 400 kg
 - (D) 800 kg
- 7. A circus performer loses his balance and falls off a tightrope and free-falls to the safety net below. Neglecting air resistance, give the best representation for the free body diagram of this scenario.

8. A student is sitting at rest in a classroom on a chair barely staying awake. Give the best representation for the free body diagram of this scenario.

- 9. If an object is thrown vertically upward, the direction and magnitude of acceleration while it is in the air is
 - (A) Upward and decreasing
 - (B) Upward and constant
 - (C) Downward and decreasing
 - $(D) Downward \ and \ constant$
- 10. Which object below will have the greatest resistance to being set in motion?

- 11. A 5.0-kilogram object accelerates at 6 m/s². What is the net force acting on this object?
 - (A) 5 N
 - (B) 6 N
 - (C) 6/5 N
 - (D) 30 N
- 12. Which diagram represents a box that is moving at a constant velocity (or is in equilibrium)?

- 13. A 5.0-kilogram box is moving to the right with an applied force of 18 N. There is a frictional force of 7 N acting to the left. What is the net force on this box?
 - (A)11 N
 - (B) 5 N
 - (C) 6 N
 - (D) 25 N
- 14. A crate has a 5 N force of gravity. It is also experiencing a 5 N normal force. If a young boy gets the crate moving and continues to apply a 2 N force to the right while the force of friction is 2 N to the left, what can be said about this crate?
 - (A) The object will accelerate
 - (B) The object will continue moving with a constant velocity
 - (C) The object will change its direction
 - (D) The object will slow down and eventually stop
- 15. A 5.0-kilogram block is being pushed to the left with a force of 12 N. The force of friction to the right is 2 N. What will be the acceleration of the block?
 - (A) 1 m/s^2
 - (B) 2 m/s^2
 - (C) 3 m/s^2
 - (D) 4 m/s^2
- 16. A boy that has a mass of 50-kilograms is about to jump up. He jumps with a force of 700 N. What will be this boy's acceleration?
 - (A) 2 m/s^2
 - (B) 4 m/s^2
 - (C) 6 m/s^2
 - (D) 8 m/s^2