Questions 1-2 refer to one of four answers shown below.

(A) Combination
(B) Decomposition
(C) Single Replacement
(D) Double Replacement

1. What is the type of reaction for the following: $\mathrm{Zn}+\mathrm{CuCl}_{2} \rightarrow \mathrm{Cu}+\mathrm{ZnCl}_{2}$
2. What is the type of reaction for the following: $2 \mathrm{Na}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NaCl}$

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{KI} \rightarrow \mathrm{PbI}_{2}+\mathrm{KNO}_{3}
$$

3. Given the chemical equation above, what are the coefficients when it is completely balanced?
(A) $1,2,2,1$
(B) $1,3,1,3$
(C) $1,2,1,2$
(D) $1,3,3,1$
4. What is the molar mass for potassium carbonate, MgO ?
(A) $16 \mathrm{~g} / \mathrm{mol}$
(B) $24 \mathrm{~g} / \mathrm{mol}$
(C) $32 \mathrm{~g} / \mathrm{mol}$
(D) $40 \mathrm{~g} / \mathrm{mol}$
5. What is the molar mass of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
(A) $113 \mathrm{~g} / \mathrm{mol}$
(B) $121 \mathrm{~g} / \mathrm{mol}$
(C) $167 \mathrm{~g} / \mathrm{mol}$
(D) $262 \mathrm{~g} / \mathrm{mol}$
6. What is the mass of 2.5 moles of O_{2} ?
(A) 80 g
(B) 60 g
(C) 40 g
(D) 20 g
7. How many moles are there in 4 grams of propane, CH_{4} ?
(A) 1.00 moles
(B) 0.50 moles
(C) 0.25 moles
(D) 0.10 moles
8. What is the total number of atoms in 2.00 moles of iron?
(A) 63.5 atoms
(B) 3.0×10^{23} atoms
(C) 6.0×10^{23} atoms
(D) 1.2×10^{24} atoms
9. What is the total number of moles of carbon dioxide gas in 9.03×10^{23} molecules?
(A) 3.0 moles
(B) 2.0 moles
(C) 1.5 moles
(D) 6.02×10^{23} moles
10. What is the mass of 3.0×10^{23} molecules of $\mathrm{H}_{2} \mathrm{O}$?
(A) 5 g
(B) 10 g
(C) 15 g
(D) 20 g
11. If a piece of aluminum has a mass of 54 grams, how many atoms of aluminum are present?
(A) 1.2×10^{24} atoms
(B) 2.4×10^{24} atoms
(C) 2 atoms
(D) 4 atoms
12. What is the percent by mass of sodium in sodium chloride, NaCl ?
(A) 18%
(B) 27%
(C) 39%
(D) 48%

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

13. In the combustion reaction above, if there are 3 moles of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, how many moles of water is produced?
(A) 3 moles
(B) 6 moles
(C) 12 moles
(D) 18 moles

Questions 14-15 refer to the following chemical reaction.

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

14. If 4 moles of hydrogen gas $\left(\mathrm{H}_{2}\right)$ is placed in a sealed container with oxygen gas, how many moles of oxygen gas will it react with?
(A) 1 moles
(B) 2 moles
(C) 4 moles
(D) 8 moles
15. With your answer of moles from the previous question, how many grams of oxygen gas $\left(\mathrm{O}_{2}\right)$ will react with the 4 moles of hydrogen gas?
(A) 16 g
(B) 32 g
(C) 48 g
(D) 64 g
